Prosthetic Joint Intraoperative Specimen Microbiology Protocol

In Clinic / Ward

• Aspirate or Biopsy through intact skin
• Blood culture
• MRSA and ESBL screen
• CRP

Infection suspected

Infection not suspected

Aseptic loosening, metal, periprosthetic fracture etc

Intraoperative Specimens Collected at Revision:

- 5 x microbiology biopsies
- 1 x biopsy for histology from most affected area
- eg capsular tissue, femoral and capsular membranes and any other sites of suspected infection.
- An aspirate from the joint capsule may be sent instead of one of the biopsies
- It is OK to collect more than 5 biopsies and they will be combined so that only 5 specimens are processed and reported.
- Metalware may be sent in addition to the 5 biopsies but we are not doing sonication at present.

Not:

- Swabs
- Sinus tract tissue
 - Washout fluid

Request:

"Prosthetic Joint Protocol"

- Contact name & number to phone gram stain results to.
- Indicate site where each biopsy was taken from and label A to F
- Indicate which biospy is for histology
- Indicate whether metalware should be returned and who to.

Transport:

- In formalin for histology (But send sample to main lab with micro specs)
- With sterile saline or dry or in syringe for aspirates for microbiology.

Expect:

- Gram stain results from micro samples in 2 hr
- Histology report in 2 working days
- Microbiology culture and antibiotic susceptibility results in 4 days (interim results may come sooner).
- Extended microbiology culture reported at 2 weeks.

This is based on the Oxford protocol validated in Atkins B L et al. J Clin Micro 1998 36 2932-2939 and British HPA guideline 2014. https://www.gov.uk/government/collections/standards-for-microbiology-investigations-smi

Forward a sample to histology.

- If one is labelled for histology, then put it in formalin and send to histo.
- If only 5 biopsies have been received then gently cut the most purulent one in half and send half to histo.

Histology

 Report presence of neutrophils > 5 per high power (x400) field

Combine biopsies until there are only 5 samples.

- Process any aspirates individually
- Register all aspirates and biopsies under the same number with suffix .900, .901, .902, .903, .904
- Register any metalware separately. This is a good specimen..
- Register any swabs under a separate number, also with .9000, .901, .902 as needed, same for washout fluids and sinus tract tissues. These are suboptimal specimens.

Findings which should be considered for diagnosis of prosthetic joint infection:

- clinical examination,
- imaging,
- antibiotic history
- Intraoperative biopsies
- blood cultures
- swabs and CRP

Gram stain each of the 5 samples and report after having inoculated all cultures

Culture:

- Extended bacterial culture: SBA and Choc @37C x10 days
- Fungal: SDA @ 30C x14 days
- Anaerobic: FAA x5 days
- Broth: CM 37C CO2 2 days subculture if cloudy to SBA/Choc split plate CO2 x2 daysand FAA -)2 x5days
- SBA saline sterility check

Clinical guidelines recommend diagnosing PJI when 2 or more intraoperative samples yield the same organism. eg IDSA Clin Infect Dis 2013 56(1) e1-25. However, a breakpoint of ≥ 3 is has much better predictive value when 5 good quality intraoperative specimens are available.

Interpretation of the 5 intraoperative biopsy/aspirate samples:

- ≥ 3/5 samples with same organism "Evidence of prosthetic joint infection"
- 1 or 2 samples with same organism "Uncertain"
- No samples positive: "Negative"

Same or different organism criteria are:

- Species identification by MALDI-TOF
- Antibiotic susceptibility
 - ≥2 differences in the full range of antibiotics tested (including those not reported) is categorised as a different organism

- Metalware samples reported seperately
- · Suboptimal specimens (swabs, sinus tissues and washout fluids) reported separately

Antibiotic Susceptibility

Isolate	Antibiotics to test and report		
Staphylococci (Vitek AST-P plus MIC by strip)	Rifampicin Ciprofloxacin Moxifloxacin Fusidic Acid	Cotrimoxazole Clindamycin Vancomycin (MIC @ 0.5 + 2 McF)	Flucloxacillin *Minocycline *Doxycline
Streptococci (Vitek AST-ST)	Penicillin	Ceftriaxone	Amoxicillin
Enterococci (Vitek AST-P and MIC)	Amoxycillin	Gentamicin (Synergy)	Vanco mycin
Enterobacteriaceae (Vitek AST-N)	Ciprofloxacin	Gentamicin Tobramycin	Amikacin Cotrimoxazole
Non-Enterobacteriacae (MIC)	Ciprofloxacin	Gentamicin Tobramycin	Amikacin Cotrimoxazole
Anaerobes (MIC Anaerobe agar)	Clindamycin Augmentin	Meropenem	Metronidazole

Chris Mansell clinical microbiologist Lenny Sanders senior scientist 31 July 2015